BER Structural Biology and Imaging Resources
Synchrotron, Neutron, and Cryo-EM
U.S. Department of Energy | Office of Science | Office of Biological and Environmental Research

Crystal Structure of NOV1

December 12, 2016

Feature Story

The crystal structure of NOV1, a stilbene cleaving oxygenase, shows the features of this enzyme at atomic resolution. This protein fold view highlights the placement of an iron (orange), dioxygen (red), and resveratrol, a representative substrate (blue) in the active site of the enzyme. Enzymes such as NOV1 could be of value in the biological production of important molecular fragments derived from lignin. (Image courtesy of Ryan McAndrew/JBEI and Berkeley Lab)

LBNL Article

McAndrew, R.P., N. Sathitsuksanoh, M.M. Mbughuni, R.A. Heins, J.H. Pereira, A. George, K.L. Sale, B.G. Fox, B.A. Simmons, and Paul D. Adams. 2016. “Structure and mechanism of NOV1, a resveratrol-cleaving dioxygenase” PNAS 113 (50) 14324-14329. doi:10.1073/pnas.1608917113

Funding Acknowledgements: Berkeley Center for Structural Biology (BCSB), Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL), work performed as collaboration between the Joint BioEnergy Institute (JBEI; and Great Lakes Bioenergy Research Center (GLBRC; JBEI support: Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE) Office of Science, through contract DE-AC02-05CH11231 between LBNL and DOE. GLBRC support: OBER, DOE Office of Science, through Grant DE-FG02-07ER64495. BCSB support in part: National Institutes of Health’s (NIH) National Institute of General Medical Sciences (NIGMS). ALS support: Director, Office of Basic Energy Sciences (OBES), DOE Office of Science, under Contract DE-AC02-05CH11231. Support for part of work: National Science Foundation (NSF) under Cooperative Agreement 1355438.