Tunable Molecular Coating Stabilizes “DNA Origami” Structures

03/24/2020

DNA nanotechnology provides a structural toolkit for the fabrication of programmable DNA nano-constructs through the folding of long, flexible DNA chains into desired shapes at the nanoscale. However, the use of such nano-constructs, known as “DNA origami” structures, in biomedical applications is challenging due their limited structural integrity in complex biological fluids.

Researchers report a class of tailorable molecular coatings, called peptoids, which can efficiently stabilize three-dimensional wireframed DNA constructs under a variety of biomedically relevant conditions, including magnesium-ion depletion and presence of degrading nuclease. The peptoid-coated DNA constructs offered a controllable anticancer drug release and an ability to display functional biomolecules on the DNA surfaces.

The study demonstrates an approach for building multifunctional and environmentally robust DNA-based molecular structures for nanomedicine and biosensing.

RELATED LINKS

Protecting DNA Origami for Anti-Cancer Drug Delivery: Scientists designed a tunable peptide-like molecular coating that enables 3-D DNA nanostructures to maintain their structural integrity and functionality in different physiological environments relevant to drug delivery and other biomedical applications.

References

S.-T. Wang, M. A. Gray, S. Xuan, Y. Lin, J. Byrnes, A. I. Nguyen, N. Todorova, M. M. Stevens, C. R. Bertozzi, R. N. Zuckermann, O. Gang. “DNA origami protection and molecular interfacing through engineered sequence-defined peptoids.” Proceedings of the National Academy of Sciences, 117 (12) 6339-6348 (2020); [DOI: 10.1073/pnas.1919749117]