Protein Cage

Using Small-angle X-ray scattering (SAXS) to efficiently and quickly image large protein molecular assemblies, scientists have designed a hollow, cube-shaped protein cage that has the potential for delivering proteins or other chemicals to specific locations for medical, energy, and other applications. The nanocage crystal structure was optimized at the Advanced Light Source (Image courtesy of Greg Hura, LBNL).

Lai, Y.T., E. Reading, G.L. Hura, K.L.Tsai, A. Laganowsky, F.J. Asturias, J.A. Tainer, C.V. Robinson, and T.O. Yeates. 2014.“Structure of a Designed Protein Cage that Self-Assembles into a Highly Porous Cube,” Nature Chemistry 6, 1065–1071. doi:10.1038/nchem.2107

Feature Article at LBNL

Funding Acknowledgements: Work supported by National Science Foundation (NSF; grant CHE-1332907, T.O.Y.), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE) Office of Science, and the National Institutes of Health (NIH; grant R01GM067167, F.J.A.). SAXS data collection and analysis at BL12.3.1 at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL) supported by the Integrated Diffraction Analysis Technologies (IDAT) program (DOE OBER), by DOE (contract DE-AC02-05CH11231) and by NIH Minocycline to Improve Neurologic Outcome in Stroke (MINOS; R01GM105404).

Featured Highlights

Highlights Date Facility